Effect of lignocellulosic inhibitory compounds on growth and ethanol fermentation of newly-isolated thermotolerant Issatchenkia orientalis.

نویسندگان

  • Yong-Jin Kwon
  • An-Zhou Ma
  • Qian Li
  • Feng Wang
  • Guo-Qiang Zhuang
  • Chun-Zhao Liu
چکیده

A newly isolated thermotolerant ethanologenic yeast strain, Issatchenkia orientalis IPE 100, was able to produce ethanol with a theoretical yield of 85% per g of glucose at 42°C. Ethanol production was inhibited by furfural, hydroxymethylfurfural and vanillin concentrations above 5.56 gL(-1), 7.81 gL(-1), and 3.17 gL(-1), respectively, but the strain was able to produce ethanol from enzymatically hydrolyzed steam-exploded cornstalk with 93.8% of theoretical yield and 0.91 gL(-1)h(-1) of productivity at 42°C. Therefore, I. orientalis IPE 100 is a potential candidate for commercial lignocelluloses-to-ethanol production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production

BACKGROUND Robust yeasts with high inhibitor, temperature, and osmotic tolerance remain a crucial requirement for the sustainable production of lignocellulosic bioethanol. These stress factors are known to severely hinder culture growth and fermentation performance. RESULTS Grape marc was selected as an extreme environment to search for innately robust yeasts because of its limited nutrients,...

متن کامل

Optimization of Antibacterial Compounds Production by Aspergillus fumigatus Isolated from Sudanese Indigenous Soil

The purposes of the present study were to screen the ability of Aspergillus fumigatus to produce antibacterial compounds using different growth parameters namely, pH, temperature, agitation and time of fermentation and investigate the effect of the yield against bacterial isolates. A. fumigatus was isolated from arable lands in Sudan and identified macroscopically and microscopically. The pure ...

متن کامل

Isolation of Thermotolerant Yeast Strains for Ethanol Production: A Need for New Approaches

There is a need for new approaches to isolate thermotolerant yeast strains that can be utilized for the efficient production of ethanol. The simultaneous saccharification and fermentation of starch or lignocellulosic will greatly benefit from thermotolerant yeast strains that actively ferment ethanol at temperatures above 40°C. The development of new procedures targeting the cell membrane to in...

متن کامل

Water-soluble phenolic compounds produced from extractive ammonia pretreatment exerted binary inhibitory effects on yeast fermentation using synthetic hydrolysate

Biochemical conversion of lignocellulosic biomass to liquid fuels requires pretreatment and enzymatic hydrolysis of the biomass to produce fermentable sugars. Degradation products produced during thermochemical pretreatment, however, inhibit the microbes with regard to both ethanol yield and cell growth. In this work, we used synthetic hydrolysates (SynH) to study the inhibition of yeast fermen...

متن کامل

Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation.

During pretreatment and hydrolysis of fiber-rich agricultural biomass, compounds such as salts, furfural, hydroxymethyl furfural (HMF), acetic, ferulic, glucuronic, rho-coumaric acids, and phenolic compounds are produced. Clostridium beijerinckii BA101 can utilize the individual sugars present in lignocellulosic [e.g., corn fiber, distillers dry grain solubles (DDGS), etc] hydrolysates such as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 102 17  شماره 

صفحات  -

تاریخ انتشار 2011